Human translation vs machine translation: The practitioner phenomenology
Keywords:
communication, human, machine, services, translationAbstract
The paper aimed at exploring the current phenomenon regarding human translation with machine translation. Human translation (HT), by definition, is when a human translator—rather than a machine—translate text. It's the oldest form of translation, relying on pure human intelligence to convert one way of saying things to another. The person who performs language translation. Learn more about using technology to reduce healthcare disparity. A person who performs language translation. The translation is necessary for the spread of information, knowledge, and ideas. It is absolutely necessary for effective and empathetic communication between different cultures. Translation, therefore, is critical for social harmony and peace. Only a human translation can tell the difference because the machine translator will just do the direct word to word translation. This is a hindrance to machines because they are not advanced to the level of rendering these nuances accurately, but they can only do word to word translations. There are different translation techniques, diverse theories about translation and eight different translation services types, including technical translation, judicial translation and certified translation. The translation is the process of translating the sequence of a messenger RNA (mRNA) molecule to a sequence of amino acids during protein synthesis. The genetic code describes the relationship between the sequence of base pairs in a gene and the corresponding amino acid sequence that it encodes.
Downloads
References
Alabau, V., Bonk, R., Buck, C., Carl, M., Casacuberta, F., García-Martínez, M., ... & Saint-am, H. (2013). Advanced computer aided translation with a web-based workbench. In 2nd Workshop on Post-Editing Technologies and Practice (pp. 55-62).
Alabau, V., Martínez-Hinarejos, C. D., Romero, V., & Lagarda, A. L. (2014). An iterative multimodal framework for the transcription of handwritten historical documents. Pattern Recognition Letters, 35, 195-203. https://doi.org/10.1016/j.patrec.2012.11.007
Alabau, V., Rodríguez-Ruiz, L., Sanchis, A., Martínez-Gómez, P., & Casacuberta, F. (2011, November). On multimodal interactive machine translation using speech recognition. In Proceedings of the 13th international conference on multimodal interfaces (pp. 129-136). ACM. https://doi.org/10.1145/2070481.2070504
Amancio, D. R., Nunes, M. D. G. V., Oliveira Jr, O. N., Pardo, T. A. S., Antiqueira, L., & Costa, L. D. F. (2011). Using metrics from complex networks to evaluate machine translation. Physica A: Statistical Mechanics and its Applications, 390(1), 131-142. https://doi.org/10.1016/j.physa.2010.08.052
Azadi, F., & Khadivi, S. (2015). Improved search strategy for interactive predictions in computer-assisted translation. In Proceedings of MT Summit (pp. 319-332).
Bahdanau, D., Cho, K., & Bengio, Y. (2014). Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473.
Barrachina, S., Bender, O., Casacuberta, F., Civera, J., Cubel, E., Khadivi, S., ... & Vilar, J. M. (2009). Statistical approaches to computer-assisted translation. Computational Linguistics, 35(1), 3-28. https://doi.org/10.1162/coli.2008.07-055-R2-06-29
Bender, C., Joseph, D., & Stunkel, C. (2005). U.S. Patent Application No. 10/685,161.
Bengio, Y., Ducharme, R., Vincent, P., & Jauvin, C. (2003). A neural probabilistic language model. Journal of machine learning research, 3(Feb), 1137-1155.
Cai, F. (2013). Human resource challenges in China after the leadership transition. Journal of Chinese Human Resource Management, 4(2), 137-143. https://doi.org/10.1108/JCHRM-05-2013-0017
Carbonell, J., & Wilks, Y. (1991). Machine translation: an in-depth tutorial. In 29th Annual Meeting of the Association for Computational Linguistics, University of California, Berkeley, CA, June (pp. 18-21).
Castano, A., & Casacuberta, F. (1997). A connectionist approach to machine translation. In Fifth European Conference on Speech Communication and Technology.
Cho, K., Van Merriënboer, B., Bahdanau, D., & Bengio, Y. (2014). On the properties of neural machine translation: Encoder-decoder approaches. arXiv preprint arXiv:1409.1259.
Cho, K., Van Merriënboer, B., Bahdanau, D., & Bengio, Y. (2014). On the properties of neural machine translation: Encoder-decoder approaches. arXiv preprint arXiv:1409.1259.
Chung, J., Cho, K., & Bengio, Y. (2016). A character-level decoder without explicit segmentation for neural machine translation. arXiv preprint arXiv:1603.06147.
Church, K. W., & Hovy, E. H. (1993). Good applications for crummy machine translation. Machine Translation, 8(4), 239-258. https://doi.org/10.1007/BF00981759
Costa-Jussa, M. R., & Fonollosa, J. A. (2016). Character-based neural machine translation. arXiv preprint arXiv:1603.00810.
Das, A., Agrawal, H., Zitnick, L., Parikh, D., & Batra, D. (2017). Human attention in visual question answering: Do humans and deep networks look at the same regions?. Computer Vision and Image Understanding, 163, 90-100. https://doi.org/10.1016/j.cviu.2017.10.001
Devlin, J., Zbib, R., Huang, Z., Lamar, T., Schwartz, R., & Makhoul, J. (2014, June). Fast and robust neural network joint models for statistical machine translation. In Proceedings of the 52nd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers) (pp. 1370-1380).
Dorr, B. J., Jordan, P. W., & Benoit, J. W. (1999). A survey of current paradigms in machine translation. In Advances in computers (Vol. 49, pp. 1-68). Elsevier. https://doi.org/10.1016/S0065-2458(08)60282-X
Foster, I., & Kesselman, C. (1997). Globus: A metacomputing infrastructure toolkit. The International Journal of Supercomputer Applications and High Performance Computing, 11(2), 115-128. https://doi.org/10.1177%2F109434209701100205
Germann, U., Jahr, M., Knight, K., Marcu, D., & Yamada, K. (2004). Fast and optimal decoding for machine translation. Artificial Intelligence, 154(1-2), 127-143. https://doi.org/10.1016/j.artint.2003.06.001
González-Rubio, J., Martinez, D. O., Casacuberta, F., & Ruiz, J. M. B. (2016, August). Beyond prefix-based interactive translation prediction. In Proceedings of The 20th SIGNLL Conference on Computational Natural Language Learning (pp. 198-207).
González-Rubio, J., Ortiz-Martínez, D., & Casacuberta, F. (2012, April). Active learning for interactive machine translation. In Proceedings of the 13th Conference of the European Chapter of the Association for Computational Linguistics (pp. 245-254). Association for Computational Linguistics.
González-Rubio, J., Ortiz-Martínez, D., Benedí, JM, & Casacuberta, F. (2013, October). Interactive machine translation using hierarchical translation models. In Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing (pp. 244-254).
Graves, A. F., Cunningham, I. M., Stark, R., Felske, K. E., Hobbs, C., & Watkins, J. H. (2009). U.S. Patent No. 7,599,620. Washington, DC: U.S. Patent and Trademark Office.
Graves, A., Mohamed, A. R., & Hinton, G. (2013, May). Speech recognition with deep recurrent neural networks. In 2013 IEEE international conference on acoustics, speech and signal processing (pp. 6645-6649). IEEE. https://doi.org/10.1109/ICASSP.2013.6638947
Green, S., Cer, D., & Manning, C. (2014, June). Phrasal: A toolkit for new directions in statistical machine translation. In Proceedings of the ninth workshop on statistical machine translation (pp. 114-121).
Gulcehre, C., Firat, O., Xu, K., Cho, K., Barrault, L., Lin, H. C., ... & Bengio, Y. (2015). On using monolingual corpora in neural machine translation. arXiv preprint arXiv:1503.03535.
Güvenir, H. A., & Cicekli, I. (1998). Learning translation templates from examples. Information systems, 23(6), 353-363. https://doi.org/10.1016/S0306-4379(98)00017-9
Hochreiter, S., & Schmidhuber, J. (1997). Long short-term memory. Neural computation, 9(8), 1735-1780. https://doi.org/10.1162/neco.1997.9.8.1735
Huang, H. J. (2011). Intermediality and human vs. machine translation. CLCWeb: comparative literature and culture, 13(3), 10. https://doi.org/10.7771/1481-4374.1796
Hutchins, W. J. (1995). Machine translation: A brief history. In Concise history of the language sciences (pp. 431-445). Pergamon. https://doi.org/10.1016/B978-0-08-042580-1.50066-0
Jean, S., Firat, O., Cho, K., Memisevic, R., & Bengio, Y. (2015, September). Montreal neural machine translation systems for WMT’15. In Proceedings of the Tenth Workshop on Statistical Machine Translation (pp. 134-140).
Kalchbrenner, N., & Blunsom, P. (2013, October). Recurrent continuous translation models. In Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing (pp. 1700-1709).
Koehn, P., & Knight, K. (2003). Feature-rich statistical translation of noun phrases. In proceedings of the 41st Annual Meeting of the association for Computational Linguistics (pp. 311-318).
Koehn, P., & Knight, K. (2009). U.S. Patent No. 7,624,005. Washington, DC: U.S. Patent and Trademark Office.
Koehn, P., & Senellart, J. (2010). Convergence of translation memory and statistical machine translation. In Proceedings of AMTA Workshop on MT Research and the Translation Industry (pp. 21-31).
Langlais, P., & Lapalme, G. (2002). Trans type: Development-evaluation cycles to boost translator's productivity. Machine Translation, 17(2), 77-98. https://doi.org/10.1023/B:COAT.0000010117.98933.a0
Ling, W., Luís, T., Marujo, L., Astudillo, R. F., Amir, S., Dyer, C., ... & Trancoso, I. (2015). Finding function in form: Compositional character models for open vocabulary word representation. arXiv preprint arXiv:1508.02096.
Luong, M. T., Le, Q. V., Sutskever, I., Vinyals, O., & Kaiser, L. (2015). Multi-task sequence to sequence learning. arXiv preprint arXiv:1511.06114.
Luong, M. T., Pham, H., & Manning, C. D. (2015). Effective approaches to attention-based neural machine translation. arXiv preprint arXiv:1508.04025.
Macklovitch, E. (2006). Machine-aided translation: methods.
Martínez-Gómez, P., Sanchis-Trilles, G., & Casacuberta, F. (2012). Online adaptation strategies for statistical machine translation in post-editing scenarios. Pattern Recognition, 45(9), 3193-3203. https://doi.org/10.1016/j.patcog.2012.01.011
Mathur, A., & Pillania, R. (2014). Strategy lessons from the FIFA World Cup 2014. Strategic Direction, 30(11), 1-3. https://doi.org/10.1108/SD-08-2014-0099
Mikolov, T., Plchot, O., Glembek, O., Burget, L., & Cernocký, J. (2010, June). PCA-based Feature Extraction for Phonotactic Language Recognition. In Odyssey (p. 42).
Mitamura, T., Nyberg, E., & Carbonell, J. G. (1991). An efficient interlingua translation system for multi-lingual document production.
Nagao, M., Tsujii, J. I., & Nakamura, J. I. (1985). The Japanese government project for machine translation. Computational Linguistics, 11(2-3), 91-110.
Nepveu, L., Lapalme, G., Langlais, P., & Foster, G. (2004). Adaptive language and translation models for interactive machine translation. In Proceedings of the 2004 Conference on Empirical Methods in Natural Language Processing (pp. 190-197).
Nomura, H., & Isahara, H. (1992). The JEIDA report on machine translation. In Proceedings of AMTA Workshop on MT Evaluation: Basis for Future Directions, San Diego, CA, USA.
Nyberg, E., Mitamura, T., & Carbonell, J. G. (1994, August). Evaluation Metrics for Knowledge-Based Machine Translation. In COLING (Vol. 94, pp. 95-99).
Ortiz-Martínez, D., Leiva, L. A., Alabau, V., García-Varea, I., & Casacuberta, F. (2011, June). An interactive machine translation system with online learning. In Proceedings of the 49th Annual Meeting of the Association for Computational Linguistics: Human Language Technologies: Systems Demonstrations (pp. 68-73). Association for Computational Linguistics.
Peris, Á., Domingo, M., & Casacuberta, F. (2017). Interactive neural machine translation. Computer Speech & Language, 45, 201-220. https://doi.org/10.1016/j.csl.2016.12.003
Schwenk, H. (2007). Continuous space language models. Computer Speech & Language, 21(3), 492-518. https://doi.org/10.1016/j.csl.2006.09.003
Sennrich, R., Haddow, B., & Birch, A. (2016). Edinburgh neural machine translation systems for wmt 16. arXiv preprint arXiv:1606.02891.
Sundermeyer, M., Alkhouli, T., Wuebker, J., & Ney, H. (2014). Translation modeling with bidirectional recurrent neural networks. In Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing (EMNLP) (pp. 14-25).
Sundermeyer, M., Schlüter, R., & Ney, H. (2012). LSTM neural networks for language modeling. In Thirteenth annual conference of the international speech communication association.
Sutskever, I., Vinyals, O., & Le, Q. V. (2014). Sequence to sequence learning with neural networks. Advances in NIPS.
Torregrosa, J. R., Argyros, I. K., Chun, C., Cordero, A., & Soleymani, F. (2014). Iterative methods for nonlinear equations or systems and their applications 2014. Journal of Applied Mathematics, 2014.
Van Slype, G. (1979). Critical study of methods for evaluating the quality of machine translation. Prepared for the Commission of European Communities Directorate General Scientific and Technical Information and Information Management. Report BR, 19142.
Wilks, J., & Wilks, E. (1991). Properties and applications of diamond (pp. 234-239). Oxford: Butterworth-Heinemann.
Wołk, K., & Marasek, K. (2015). Neural-based machine translation for medical text domain. based on european medicines agency leaflet texts. Procedia Computer Science, 64, 2-9. https://doi.org/10.1016/j.procs.2015.08.456
Published
How to Cite
Issue
Section
Copyright (c) 2018 Linguistics and Culture Review
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.