How to Cite:

Syahidun, S., & Nawangsari, L. C. (2022). The role of green human capital on company sustainability based on study at pertamina rewulu fuel terminal. *Linguistics and Culture Review*, 6(S1), 711-719. https://doi.org/10.21744/lingcure.v6nS1.2148

The Role of Green Human Capital on Company Sustainability based on Study at Pertamina Rewulu Fuel Terminal

Syahidun

Universitas Mercu Buana, Jakarta, Indonesia

Lenny C Nawangsari

Universitas Mercu Buana, Jakarta, Indonesia

Abstract---This study will dissect the influence of green human capital on Company Sustainability. The number of participants in this study was workers at PERTAMINA's Rewulu, Fuel Terminal, with a complete sample of 125 representatives. The data testing strategy uses the Structural Equation Model Partial Least Square. The results of this study found that green human capital significantly affects the carrying capacity of the company, either directly by intervening in the administration of the green environment; besides that, green environmental governance also has a significant impact on the company's sustainability. The company is committed to implementing the highest standards of occupational health and safety practices, respecting and involving the surrounding community to promote sustainable social and economic development.

Keywords---company sustainability, continuous improvement, economic development, green human capital, green innovation.

Introduction

Globally, the issue of environmental discussion began to emerge since the implementation of the Environment Conference in Sweden in 1972 in Stockholm, which the United Nations initiated. Extreme weather changes can increase the earth's temperature. This is caused by the release of nitrous oxide, methane, carbon dioxide, perfluorocarbons, hydrofluorocarbons, and sulfur hexafluoride gases, which result in sunlight-based energy needs being captured in the earth's environment or referred to as the nursery effect (Cars & West, 2015; Aboelmaged & Hashem, 2019).

PT Pertamina (Persero) Marketing Operations Unit is a company that manages the downstream sector in the oil and gas sector in the form of marketing and commercial activities which include supply and distribution of fuel oil and petrochemicals produced by domestic refineries and from foreign sources. PT Pertamina has an environmental policy to ensure the implementation of green environmental management in all of its work areas and take an active role in energy resource efficiency and reducing or preventing various pollutions from achieving sustainability (Santosa, 2020; Chuang & Huang, 2018; Fait et al., 2021).

Organization maintainability is business manageability that alludes to the association's objectives to accomplish benefits and work on social improvement by thinking about ecological angles (Abbas & Sağsan, 2019). Sustainable business starts with the idea of advancement, which keeps harmony between monetary, social, and natural aspects (Purvis et al., 2019). Things that can influence organization maintainability, in particular: Green Intellectual capital, including human resources, primary capital, and social capital as exogenous factors, just as Green Environmental Management is a go-between (intervening variable) on organization sustainability (Asiaei et al., 2021). This Study planned to dissect the effect of green human capital on the company's Sustainability by interceding green natural administration (Liu, 2017; Yusoff et al., 2019).

Method

This Study was a causal exploration utilizing a quantitative methodology. The number of inhabitants in this review was representatives of Pertamina Rewulu Fuel Terminal - Yogyakarta, with an all-out example of 125 workers (Oviogun & Veerdee, 2020; Rinartha et al., 2018). The examining procedure utilized was non-likelihood inspecting, implying that the whole populace was utilized as the examination test. The factors in this review were green human Capital (X1), green natural and the company's Sustainability Y2). This review utilized essential and auxiliary information hotspots for information assortment through perception, conveying polls, and documentation (de Villiers et al., 2014; Labuschagne et al., 2005).

The primary data is presented through analysis using the Structural Equation Model Partial Square with several steps that develop the evaluation model by playing several tests clearly to get Convergent Validity Distinguishing validity and reliability and extractive variation and Cronbach Alpha which composes a structural model with determinant coefficient tests (Rahmiyati et al., 2021; Amerta et al., 2018). Tests the relevance of the perspective from there; the data is then tested to obtain the relevance of the overall structure model validation coefficient with the goodness of fit index. This theory test comprises two tests, in particular, the immediate impact test utilizing Smart PLS with the bootstrapping technique and the backhanded impact test utilizing SmartPLS 3.3.3 by testing the impact of exogenous factors on endogenous factors, testing the impact of exogenous and intervening factors on endogenous factors. From that point onward, the interceding impact was tried with a relapse trial of exogenous factors to endogenous factors, exogenous factors to the arbiter (intervening

variable), and exogenous and intervening factors to endogenous factors. The last advance was incorporating the relationship lattice between aspects (Bessant et al., 2001; Bessant et al., 1994).

Results

Company description

Result Fuel Terminal is one of PT. Pertamina (Persero) work locations are located in the Marketing Operation Region (MOR) IV, Central Java & Special Region of Yogyakarta (Doroshenko et al., 2021; Kotsiubivska et al., 2021). The main activities of Rewulu Fuel Terminal include receiving, stockpiling, and distributing fuel (premium, diesel, biodiesel) and specific fuel (Betamax, Pertamina dex, after) products. The Rewulu TBBM distribution area covers the Special Regions of Yogyakarta, Kedu and Klaten. Result Fuel Terminal does not let go of its responsibility to care about environmental sustainability and continues to strive to reduce the effect on the environmental system. The Triple Bottom Line principle needs to be implemented according to the capacity owned, where the balance of aspects, planet, and profit becomes the primary reference in managing the operation of a fuel terminal to maintain the sustainability of the company company's downstream oil and gas business (Huffman, 2001; Gradstein & Justman, 2000).

Respondent description

The conveyance of respondents dependent on sex, schooling, working period, and age are displayed in the accompanying table:

 $\begin{array}{c} \text{Table 1} \\ \text{Conveyance of respondents dependent on gender, education, working period, and} \\ \text{age} \end{array}$

No	Rese	Total (people)	Percentage	
1	Gender Male		116	92.8%
		Female	9	7.2%
2	Education	Senior High School	23	18%
		Vocational High School	9	7%
		Diploma One	4	3%
		Diploma Three	42	33%
		Diploma Four	2	3%
		Bachelor	42	33%
		Master	2	3%
3	Working period	<5 years	36	31%
		5-10 years	46	37%
		10-15 years	20	16%
		>15 years	22	18%
4	Age	<25 years old	15	12%
		25 – 35 years old	65	52%
		36 – 50 years old	36	29%

No	Research variable	Total (people)	Percentage
	>50 years old	9	7%

The table above shows that most of the respondents are male (92.8%), have D3 and S1 education (43%), have a working period of 5 to 10 years (37%), and are between 25 to 35 years old (52%) (Gylfason, 2001; Lin & Nugent, 1995).

Inferential analysis

Testing the measurement model (Outer Model) Validity test

- Convergent Validity
 - Green Human Capital (X1) Variable
 The results of the validation test are shown in the following table:

Table 2
The value of the loading factor of the green human resource variable

Variable	Indicator	Outer Loading	Condition	Description
	Code	Value		
	X1.1	0.780	>0.7	Validity
Green Human	X1.2	0.798	>0.7	Validity
Capital (X1)	X1.4	0.800	>0.7	Validity
	X1.5	0.800	>0.7	Validity

The table above shows that each indicator's entire loading factor value in the variable and dimension is above 0.7 (Salinas-Ávila et al., 2020; Yu & Huo, 2019). This proves that all Green Human Capital (X1) variable indicators used in this study are valid or have met convergent validity.

• Company Sustainability Variable (Y2)
The finding of the validation test are shown in the following list:

Table 3 Loading factor value of company sustainability (Y2) Variable

Variable	Indicator	Outer Loading	Condition	Description
	Code	Value		
	Y-2,1	0.707	>0.7	Validation
	Y-2,3	0.772	>0.7	Validation
	Y-2,4	0.725	>0.7	Validation
Company	Y-2,5	0.842	>0.7	Validation
Sustainability	Y-2,6	0.715	>0.7	Validation
(Y2)	Y-2,7	0.797	>0.7	Validation
	Y-2,8	0.831	>0.7	Validation
	Y-2,9	0.832	>0.7	Validation

Table 4
AVE (Average Variance Extraction) value of research model

Variable	Dimension	AVE Value	AVE Value
Green Human	1.1 Competence	0.787	0.633
Capital (X1)	1.2 Behavior	0.802	0.033
Company	5.1 Economic	0.735	
Sustainability (Y2)	Aspect		0.607
	5.2 Social Aspect	0.696	
	5.3 Environmental	0.797	
	Aspect		

From the table above, it tends to be seen that the AVE worth of the exploration model, for all examination factors and aspects, is above 0.5, so the AVE an incentive for discriminant legitimacy testing have met (the condition) for additional testing (Albort-Morant et al., 2016; Tseng et al., 2013).

Reliability test

The aftereffects of the dependability test are displayed in the accompanying table:

Table 5 Composite reliability value of the research model

Variable	Composite Reliability	Condition	Cronbach's Alpha	Condition	Description
GHC (X1)	0.873	>0.7	0.807	>0.7	Reliable
GEM(Y1)	0.958	>0.7	0.944	>0.7	Reliable
SP (Y2)	0.926	>0.7	0.906	>0.7	Reliable

The table above shows that every factor has a composite unwavering quality worth above 0.7. From these outcomes, it very well may be inferred which the examination type has reached the worth of Cronbach's alpha.

Theory testing

The consequences of theory testing utilizing SmartPLS 3.3.3 programming are displayed in the accompanying table:

Table 6
Upsides of Path Coefficient, P-Values, and t-Statistics

Relationship Between Constructs	Path Coefficient	t-Statistics	P-Value	Description
Direct Effect				
GHC → GEM	0.262	2,045	0.021	Significantly Valuable Effect
GHC → CS	0.287	2.212	0.014	Significantly Valuable Effect

- There is a valuable and primary effect of Green Human Capital (X1) on Green Ecological System (Y1)
- There is a valuable and enormous impact of Green Human Resources (X1) on Company Sustainability (Y2)

The translation of connection investigation is as per the following:

- Green Human Resources (X1) Variable on Green Ecological Control Variable (Y1)
- Green Human Resources (X1) Variable on Company maintainableVariables (Y2)

Discussion

- The Effect of Green Human Capital on Company Sustainability Human Resources has a positive and massive impact on Company Sustainability. The highest correlation value is between the behavioral and economic aspects from the correlation between dimensions. The correlation relationship is at a moderate level, so it is necessary to develop behavior in the form of employees who actively make innovation to improve the environmental management to affect Company Sustainability in terms of the economic aspect of the company, operating cost efficiency. Profitable business affects welfare—and eventually, affects Company Sustainability primarily to determine business decisions in preparing a good company budget work plan to maintain a balance between welfare and environmental sustainability (Tien et al., 2020; Asmeri et al., 2017; Wang, 2018). This is following the review. The aftereffects of this review are following the review, which expresses that human resources positively affect manageable development, where the additional worth of human resources can build the worth of reasonable development (Zallé, 2019). This is likewise following the review which uncovers that business manageability is a work made by organizations to limit adverse consequences on the climate and social for the present and the future—and partitions hierarchical maintainability into three viewpoints, to be specific monetary, social, and the climate (Yusoff et al., 2019). Moreover, this is in like manner following the examination of Josephine et al. (2020) that driving Green Human Capital and Green complimentary resource influences Business Maintainable, while Green Structural Capital does not affect Business Sustainability (Josephine et al., 2020).
- The Impact of Green Human resources on Company Sustainability Green social capital has a positive and critical impact on Company Sustainability. The most noteworthy connection esteem is between the collaboration and social viewpoint aspects from the relationship between's aspects. The correlation relationship is at a moderate level, so it needs to be developed, meaning that the better the implementation of teamwork by involving external parties such as customers, business partners, and related agencies in the form of a community economic empowerment movement (company social responsibility program) around the company's company's operational areas, it will affect the Company Sustainability. This is following the investigation of Josephine et al. (2020), that leading Green

Human Resources and Green logical capital affect Business Maintainability, while Green Structural Capital has no impact on Business Sustainability (Josephine et al., 2020; Yu et al., 2020).

Conclusion

Green human capital significantly affect Company Sustainability, either straightforwardly or by interceding green natural administration. In order to maintain sustainability, continuous improvement projects are carried out to support green innovation in implementing green technology in resource utilization and preserving the environment while still involving the role of external parties.

References

- Abbas, J., & Sağsan, M. (2019). Impact of knowledge management practices on green innovation and corporate sustainable development: A structural analysis. *Journal of cleaner production*, 229, 611-620.
- Aboelmaged, M., & Hashem, G. (2019). Absorptive capacity and green innovation adoption in SMEs: The mediating effects of sustainable organisational capabilities. *Journal of cleaner production*, 220, 853-863.
- Albort-Morant, G., Leal-Millán, A., & Cepeda-Carrión, G. (2016). The antecedents of green innovation performance: A model of learning and capabilities. *Journal of Business Research*, 69(11), 4912-4917. https://doi.org/10.1016/j.jbusres.2016.04.052
- Amerta, I. M. S., Sara, I. M., & Bagiada, K. (2018). Sustainable tourism development. *International Research Journal of Management, IT and Social Sciences*, 5(2), 248-254. Retrieved from https://sloap.org/journals/index.php/irjmis/article/view/176
- Asiaei, K., Bontis, N., Alizadeh, R., & Yaghoubi, M. (2021). Green intellectual capital and environmental management accounting: Natural resource orchestration in favor of environmental performance. *Business Strategy and the Environment*.
- Asmeri, R., Alvionita, T., & Gunardi, A. (2017). CSR disclosures in the mining industry: Empirical evidence from listed mining firms in Indonesia. *indonesian Journal of sustainability accounting and Management*, 1(1), 16-22.
- Bessant, J., Caffyn, S., & Gallagher, M. (2001). An evolutionary model of continuous improvement behaviour. *Technovation*, 21(2), 67-77. https://doi.org/10.1016/S0166-4972(00)00023-7
- Bessant, J., Caffyn, S., Gilbert, J., Harding, R., & Webb, S. (1994). Rediscovering continuous improvement. *Technovation*, 14(1), 17-29. https://doi.org/10.1016/0166-4972(94)90067-1
- Cars, M., & West, E. E. (2015). Education for sustainable society: attainments and good practices in Sweden during the United Nations Decade for Education for Sustainable Development (UNDESD). *Environment, Development and Sustainability*, 17(1), 1-21.
- Chuang, S. P., & Huang, S. J. (2018). The effect of environmental corporate social responsibility on environmental performance and business competitiveness: The mediation of green information technology capital. *Journal of Business Ethics*, 150(4), 991-1009.

- de Villiers, C., Low, M., & Samkin, G. (2014). The institutionalisation of mining company sustainability disclosures. *Journal of Cleaner Production*, 84, 51-58. https://doi.org/10.1016/j.jclepro.2014.01.089
- Doroshenko, Y. A., Malykhina, I. O., Leonova, O. V., & Rudychev, A. A. (2021). The analysis of infrastructural support for high-tech development of the domestic economy in the context of neo-industrialization. *Linguistics and Culture Review*, 5(1), 318-328. https://doi.org/10.21744/lingcure.v5n1.1616
- Fait, M., Cillo, V., Papa, A., Meissner, D., & Scorrano, P. (2021). The roots of "volunteer" employees' engagement: The silent role of intellectual capital in knowledge-sharing intentions. *Journal of Intellectual Capital*.
- Gradstein, M., & Justman, M. (2000). Human capital, social capital, and public schooling. *European Economic Review*, 44(4-6), 879-890. https://doi.org/10.1016/S0014-2921(99)00044-6
- Gylfason, T. (2001). Natural resources, education, and economic development. European economic review, 45(4-6), 847-859. https://doi.org/10.1016/S0014-2921(01)00127-1
- Huffman, W. E. (2001). Human capital: Education and agriculture. *Handbook of agricultural economics*, 1, 333-381. https://doi.org/10.1016/S1574-0072(01)10010-1
- Josephine, K., Ciptadi, B. A., & Aloysius, J. (2020). Pengaruh Green Intellectual Capital Terhadap Business Sustainability. *Jurnal Manajemen Strategi dan Aplikasi Bisnis*, 3(2), 117-128.
- Kotsiubivska, K. I., Tymoshenko, O. V., Chaikovska, O. A., Tolmach, M. S., & Khrushch, S. S. (2021). Neural network approximation in forecasting economic risks. *Linguistics and Culture Review*, *5*(S4), 1830-1841. https://doi.org/10.21744/lingcure.v5nS4.1875
- Labuschagne, C., Brent, A. C., & Van Erck, R. P. (2005). Assessing the sustainability performances of industries. *Journal of cleaner production*, 13(4), 373-385. https://doi.org/10.1016/j.jclepro.2003.10.007
- Lin, J. Y., & Nugent, J. B. (1995). Institutions and economic development. Handbook of development economics, 3, 2301-2370. https://doi.org/10.1016/S1573-4471(05)80010-5
- Liu, C. H. (2017). Creating competitive advantage: Linking perspectives of organization learning, innovation behavior and intellectual capital. *International Journal of Hospitality Management*, 66, 13-23.
- Oviogun, P. V., & Veerdee, P. S. (2020). Definition of language and linguistics: basic competence. *Macrolinguistics and Microlinguistics*, 1(1), 1–12. Retrieved from https://mami.nyc/index.php/journal/article/view/1
- Purvis, B., Mao, Y., & Robinson, D. (2019). Three pillars of sustainability: in search of conceptual origins. *Sustainability science*, 14(3), 681-695.
- Rahmiyati, N., Andayani, S. ., & Indartuti, E. (2021). The development strategy of civil association cooperative. *International Research Journal of Management, IT and Social Sciences*, 8(2), 148-154. https://doi.org/10.21744/irjmis.v8n2.1325
- Rinartha, K., Suryasa, W., & Kartika, L. G. S. (2018). Comparative Analysis of String Similarity on Dynamic Query Suggestions. In 2018 Electrical Power, Electronics, Communications, Controls and Informatics Seminar (EECCIS) (pp. 399-404). IEEE.

- Salinas-Ávila, J., Abreu-Ledón, R., & Tamayo-Arias, J. (2020). Intellectual capital and knowledge generation: an empirical study from Colombian public universities. *Journal of Intellectual Capital*.
- Santosa, A. (2020, July). Standards ISO 14001: 2015 as The Basis for Green Innovation, Sustainable Development and Competitive Advantage: The Case of State Energy Company PT Pertamina (Persero). In Seminar Nasional Teknik Kimia Kejuangan (p. 3).
- Tien, N. H., Anh, D. B. H., & Ngoc, N. M. (2020). Corporate financial performance due to sustainable development in Vietnam. *Corporate Social Responsibility and Environmental Management*, 27(2), 694-705.
- Tseng, M. L., Wang, R., Chiu, A. S., Geng, Y., & Lin, Y. H. (2013). Improving performance of green innovation practices under uncertainty. *Journal of cleaner production*, 40, 71-82. https://doi.org/10.1016/j.jclepro.2011.10.009
- Wang, D., Wang, X., & Xia, N. (2018). How safety-related stress affects workers' safety behavior: The moderating role of psychological capital. *Safety Science*, 103, 247-259.
- Wang, X., Sun, C., Wang, S., Zhang, Z., & Zou, W. (2018). Going green or going away? A spatial empirical examination of the relationship between environmental regulations, biased technological progress, and green total factor productivity. *International Journal of Environmental Research and Public Health*, 15(9), 1917.
- Yu, W., Chavez, R., Feng, M., Wong, C. Y., & Fynes, B. (2020). Green human resource management and environmental cooperation: An ability-motivation-opportunity and contingency perspective. *International Journal of Production Economics*, 219, 224-235.
- Yu, Y., & Huo, B. (2019). The impact of environmental orientation on supplier green management and financial performance: The moderating role of relational capital. *Journal of cleaner production*, 211, 628-639.
- Yusoff, Y. M., Omar, M. K., Zaman, M. D. K., & Samad, S. (2019). Do all elements of green intellectual capital contribute toward business sustainability? Evidence from the Malaysian context using the Partial Least Squares method. *Journal of Cleaner Production*, 234, 626-637.
- Zallé, O. (2019). Natural resources and economic growth in Africa: The role of institutional quality and human capital. *Resources Policy*, 62, 616-624.